T2K and HK future near detectors

A. Minamino (Kyoto Univ.)

Aug. 11, 2015

NuFact15 @ Rio

Contents

- Introduction
- Current T2K systematic errors
- Effect of syst. errors for δ_{CP} measure.
- T2K near detectors
- Limitation of current near detectors
- Candidate new near detectors
- Physics requirements vs. detectors
- Summary

Introduction (1)

- T2K's approved POT by J-PARC PAC is 7.8e21.
 - Current delivered POT is 1.1e21 (15%).
- T2K started a discussion to extend the T2K running up to 25e21 POT*.
 - T2K also started a discussion about the collaboration efforts equivalent to 1.5~2 times statistical increase. (Horn current optimization, new SK samples/fiducial volume, ...)

A case study on expected POT projection

Year (20XX)	15	16	17	18	19	20	21	22	23	24	25	26	27	28
POT (e21)	1.4	2.3	3.1	3.9	5.4	7.1	9.0	11.1	13.3	15.7	18.1	20.6	23.1	25.5
Power (MW)	0.36	0.40	0.46	0.70	0.80	0.89	1.06	1.12	1.19	1.29	1.29	1.33	1.33	1.33

T2K

T2K extension

^{*} Workshop for Neutrino Programs with facilities in Japan http://www-conf.kek.jp/ws_nu_prog_in_jp/

Introduction (2)

- Hyper-K is a next generation underground water
 Cherenkov detector, the successor to Super-K.
 - The fiducial volume is 25 times larger than one of Super-K.
- Physics potential of Hyper-K + J-PARC ν beam*
 - CP phase precision: <19°</p>
 - CP discovery coverage: 76% (3σ), 58% (5σ)
- Proposed timeline of Hyper-K

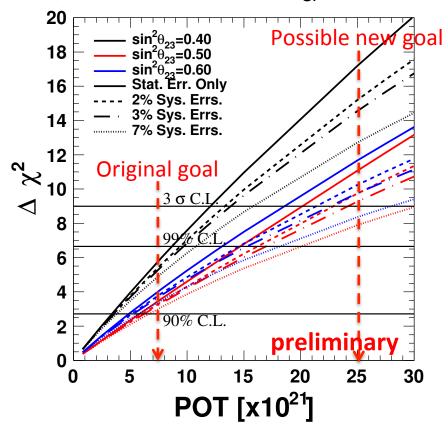
						<i>,</i> ,						
	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
			\rightarrow					1		\rightarrow		
Su	rvey, De	tailed d	esign	Access	tunnels	Cavity	excava	tion	Tank co	nst.		
J	(0), 50	tanea a	C3.B1.			,						
F	hoto-se	nsor		-	Pho	to-senso	or produ	ction			Oper	ation
C	levelopi	ment	Prototy	pe				Se	nsor ins	tallatior	1	

* PTEP 053C02 (2015)

Condition: 1.5x10²² POT (7.5MW x 10⁷ sec.), $\sin^2 2\theta_{13} = 0.1$, mass hierarchy known

Current T2K systematic errors

 $2014 \rightarrow 2015$


		ν_{μ} sample	$v_{\rm e}$ sample	$\overline{ u}_{\mu}$ sample	$\overline{ u}_e$ sample
ν flux		16%	11%	7.1%	8%
v flux and	w/o ND measurement	21.8%	26.0%	9.2%	9.4%
cross section	w/ ND measurement	2.7%	3.1%	3.4%	3.0%
	n due to difference of btw. near and far	5.0%*	4.7%*	10%	9.8%
Final or Secondary Hadronic Interaction		3.0%	2.4%	2.1%	2.2%
Super-K detector		4.0%	2.7%	3.8%	3.0%
total	w/o ND measurement	23.5%	26.8%	14.4%	13.5%
	w/ ND measurement	7.7%	6.8%	11.6%	11.0%

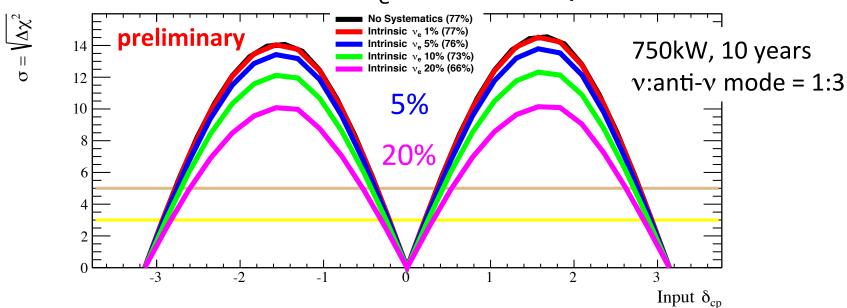
There are on-going efforts to reduce this nucleus-dependent errors with water target measurements in T2K near detectors.

^{* 2014} errors don't include the effect of multi-nucleon bound state at the neutrino interaction. $_{5}$

Effect of syst. errors for δ_{CP} measure. (1)

 $\Delta \chi^2$ for resolving $\sin \delta_{CP} \neq 0$ in T2K

- At the goal of the T2K extension* (25e21 POT), reducing systematic errors from 7% to 2% is equivalent to 25% more data.
- Syst. errors should be reduced as much as possible to maximize the physics sensitivity.

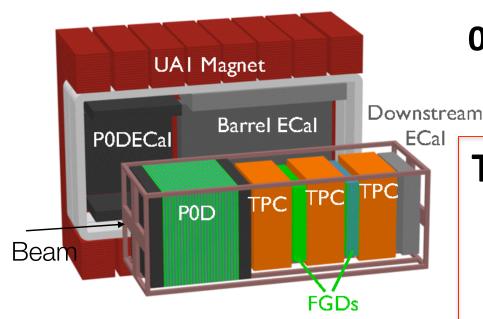

true δ_{CP} = - π /2, true MH = NH 50% ν + 50% anti- ν mode

^{*} Discussion about the extension is just started. Nothing has been decided yet.

Effect of syst. errors for δ_{CP} measure. (2)

- Significance of CP violation vs. $\delta_{\rm CP}$ w/ Hyper-K + J-PARC
 - Dominant syst. error is the intrinsic v_e BG

Intrinsic v_e uncertainty



20% error of intrinsic v_e can ruin the sensitivity. < 5% error is ideal.

True osc. param. $sin^2(2\theta_{13}) = 0.0$

 $sin^2(2\theta_{13}) = 0.084 \pm 0.005, sin^2(\theta_{23}) = 0.5, sin^2(\theta_{12}) = 0.306,$ $\Delta m_{21}^2 = 7.5 \cdot 10^{-5} eV^2, \Delta m_{32}^2 = 2.4 \cdot 10^{-3} eV^2$

T2K near detectors (ND280)

0.2 T magnetic field

Surrounding ECALs

Tracker: Constrain signal/BG predictions for OA

Fine-Grained Detector (FGD) active plastic scintillator target* (+ passive water targets (FGD2))

TPCs

- particle/charge ID
- Momentum measure.

π^0 detector (P0D)

active plastic scintillator targets*

- + passive water targets
- + brass radiator layers

Limitation of current near detectors (1)

Detector acceptance

— Super-K: 4π coverage.

 ND280: The large angle reconstruction efficiency is limited to ~10% by geometry of the FGD.

Mass fraction of water

Super-K: 100%

ND280: 47% (Analyses will use FGD1 and FGD2(water).)

Neutrino flux

Super-K: point sourceND280: line source

The diff. is relevant for extrapolating BGs where oscillation effect is small:

 $NCπ^0$ and intrinsic v_a

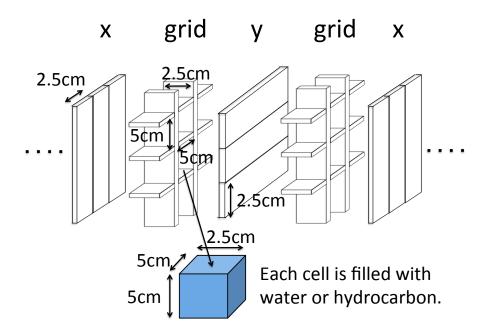
 Oscillations change the energy dependence/the flavor of the flux.

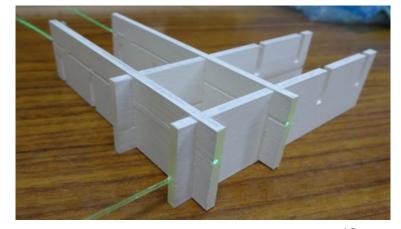
Limitation of current near detectors (2)

Proton reconstruction

 Energy/momentum threshold (from track) or energy resolution (from vertex activity) of protons with the current near detector may not be sufficient to give definite answer for CCQE and Multi-nucleon CCQE-like interactions.

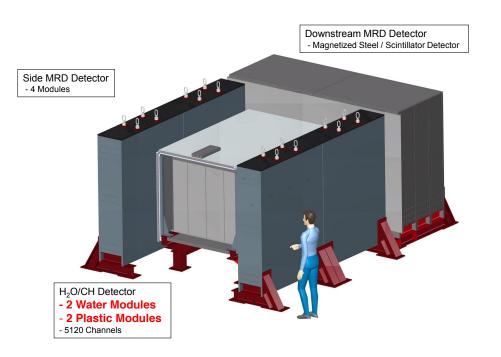
• v_e measurement


- The large amount of material surrounding the inner tracker of the current ND280 is a background source of converting photons ($\gamma \rightarrow e^+e^-$) in FGD for the ν_e measurements.
- Statistics of v_e events for E_v < 1.2 GeV with the current near detectors are too low for a few percent measurement. (~10% stat. error for 3.9e21 POT)


Candidate new ND280 detectors

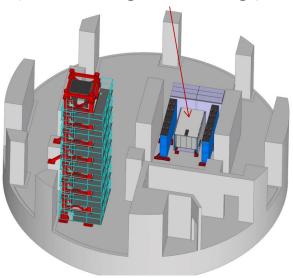
- 1. 3D grid water detector
- 2. High pressure TPC
- 3. Water based scintillator detector
- 4. Emulsion detector

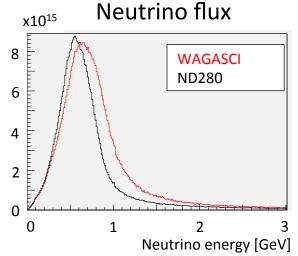
WAGASCI


- 3D grid-like structure
 - -x + grid + y + grid + ... layers
 - -4π angular acceptance for charged particles
 - $-H_2O(signal):CH(BG) = 79:21$

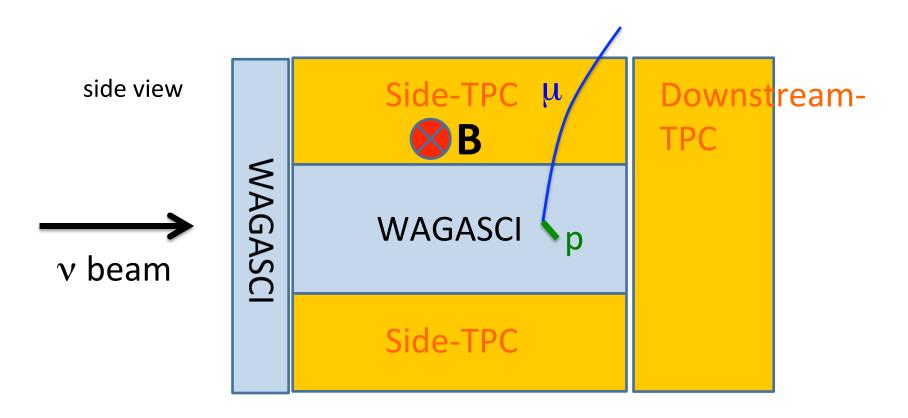
WAGASCI (J-PARC T59)

An approved test experiment by J-PARC PAC (T59).


Goals


Measure cross section ratio between H_2O and CH with 4π acceptance/<3% error to increase T2K sensitivity.

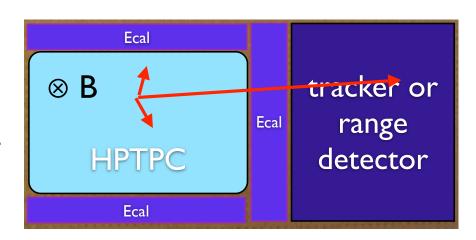
Schedule


- 2016: Construction of detectors
- Early 2017: Start beam measurement

B2 floor of ND280 pit (Off-axis angle = 1.6 deg.)

WAGASCI in ND280 magnet

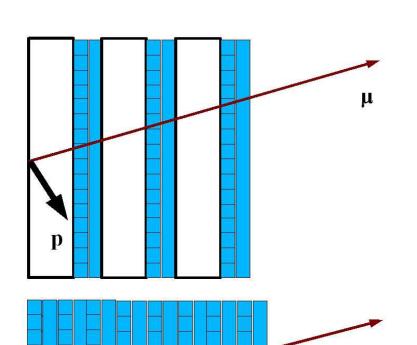
Excellent charge/particle identification and momentum measurement for large angle tracks with side-TPCs.


High-pressure TPC

High-pressure TPC

- Low thresholds.
 - → Sensitive to hadronic final state.
- excellent PID capabilities.
- Momentum measurement.
- Almost uniform 4π acceptance.

Goals


- Multi-nucleon modeling.
- Multi-pion resonance.
- Final state interaction.
- Secondary interaction in detector.

of CC events assuming full FV.

2x2x2 m³ 20°C	5 bars	10 bars			
He	6.65 kg	13.3 kg			
пе	520 evt/10 ²¹ pot	1040 evt/10 ²¹ pot			
NI.	32.5 kg	67.1 kg			
Ne	2543 evt/10 ²¹ pot	5086 evt/10 ²¹ pot			
Ar	66.5 kg	133 kg			
Ar	5203 evt/10 ²¹ pot	10406 evt/10 ²¹ pot			
CE.	146.3 kg	293 kg			
CF₄	11450 evt/10 ²¹ pot	22893 evt/10 ²¹ pot			

Water based scintillator cells in FGD/P0D

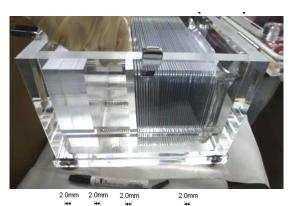
Present near detector:

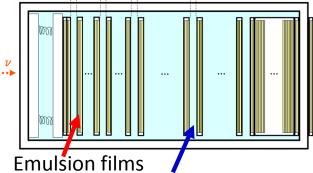
Passive water layers between plastic scintillator layers

- → Dead region.
- → Low energy recoil protons in passive water produce no signal.

Active scintillating water:

Introduce water based scintillator cells (< 5mm cell size).

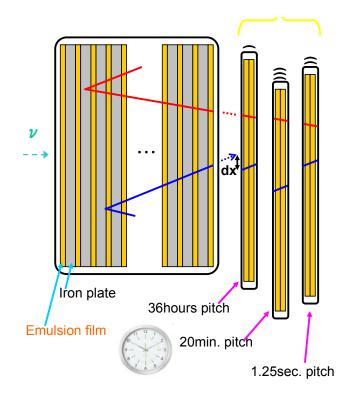

- → No dead region.
- → All recoil particles detected.


R&D is on-going.

Emulsion detector (J-PARC T60)

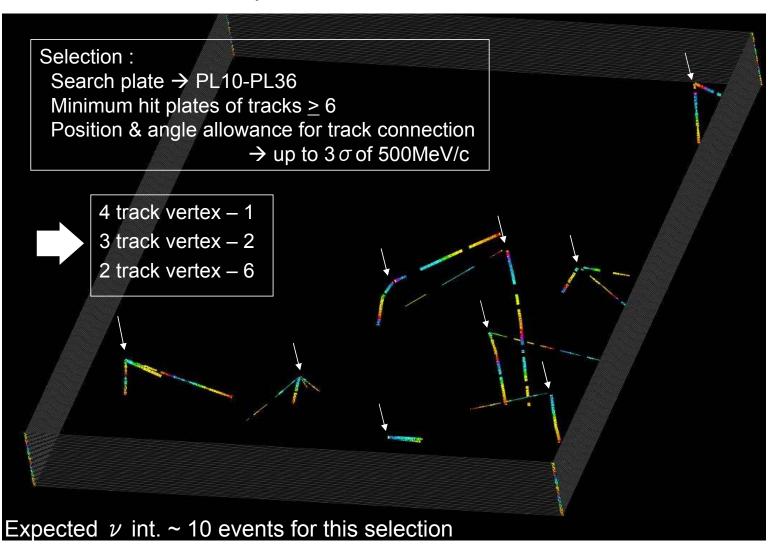
An approved test experiment by J-PARC PAC (T60).

Water target emulsion chamber



in Water target chamber

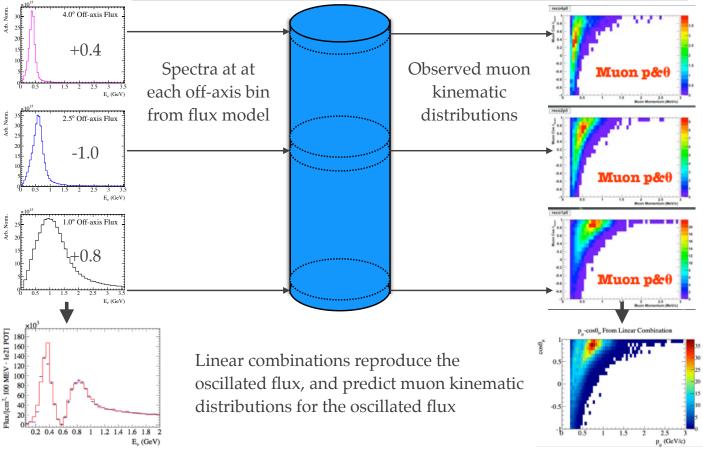
(water layer: 2mm)


Emulsion shifter

- Time stamps for ν events
- Hybrid analysis with other near detectors

Emulsion detector (J-PARC T60)

Pilot analysis: Multi-track vertex search

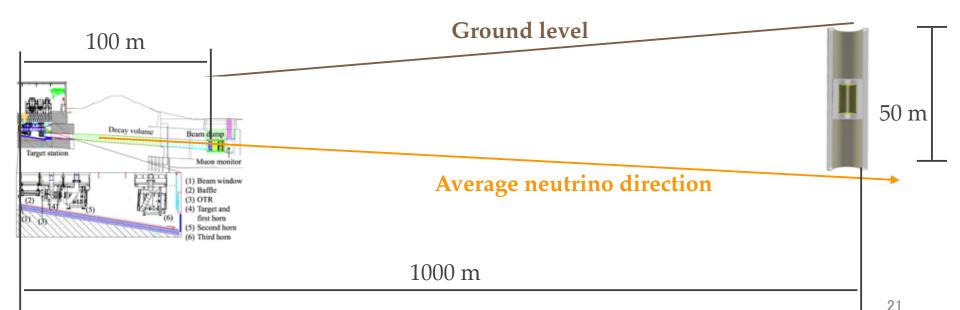

Candidate intermediate detectors (1~2km from target)

- 1. Water Cherenkov detector with wide off-axis angle coverage
- 2. Gd-doped water Cherenkov detector

νPRISM

 An experimental method to remove uncertainties of neutrino interaction(+ FSI&SI) from oscillation analysis.

Linear Combinations

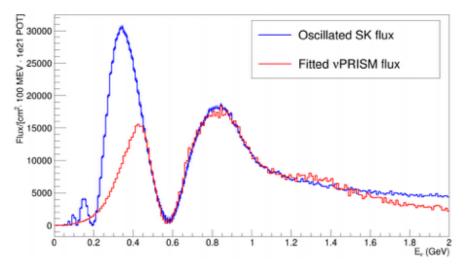


Use the templates of muon p- θ distribution for the oscillation fit.

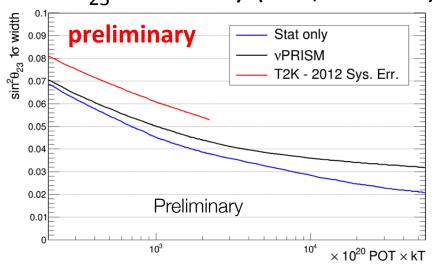
vPRISM

Detector

- 10m diameter water cherenkov detector (~3000 8 inch PMTs with 40% photo coverage)
- 50m height detector hall (covers 1-4° off-axis.)
- Move up and down in the hall to take measurement at different off-axis angles.



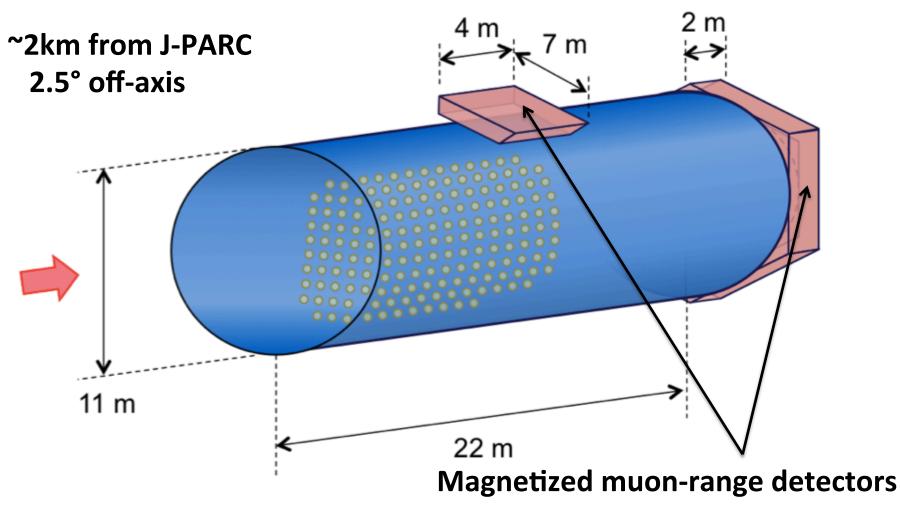
vPRISM


• v_{μ} disappearance analysis

− 4.3 % systematic effect on $\sin^2 2\theta_{23}$ from "multi-nucleon" modeling when using ND280. \rightarrow 1.2% when using vPRISM.

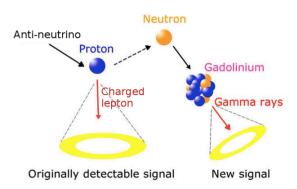
A template for the oscillated flux.

 $\sin^2\theta_{23}$ sensitivity (T2K, v mode)

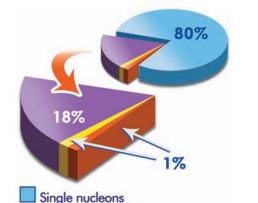


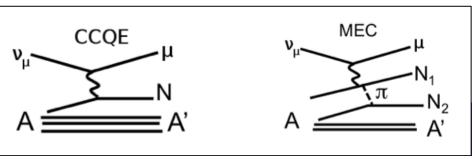
Other physics

- Short baseline v_e appearance (Sterile neutrino search).
- Cross section measurements using monochromatic beams. 22

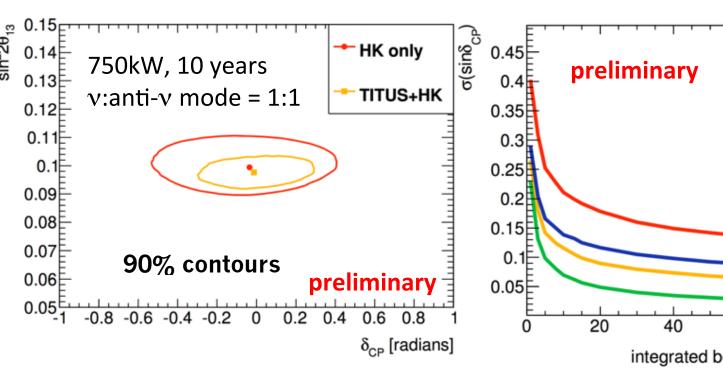

TITUS

2kton Gd-doped (0.1%) water Cherenkov detector


TITUS


- Neutron capture on Gadolinium:
 - Cross section of 49,000b compared to 0.3b for H
 - 8MeV gamma cascade with 4-5MeV visible energy
 - 0.1% Gd doping: ~90% of neutrons capture on Gd

- New signal to distinguish v / \overline{v} events and different interaction modes:
 - $v_{u} CCQE: v_{u} + n \rightarrow \mu^{-} + p$
 - $\overline{\nabla}_{u} CCQE: \overline{\nabla}_{u} + p \rightarrow \mu^{+} + n$
 - v_{μ} MEC: $v_{\mu} + (n + p/n) -> \mu^{-} + p + p/n$
 - $\overline{\nu}_{\mu} MEC: \overline{\nu}_{\mu} + (p + p/n) \rightarrow \mu^{+} + n + p/n$


- 0 neutrons
- 1 neutron
- 0.2 neutrons on average
- 1.8 neutrons on average

TITUS

δ_{CP} sensitivity (Hyper-K + J-PARC)

90% contours preliminary δ-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 δ _{CP} [radians]	0.3 0.25 0.15 0.15 0.05 0
Parameter Nominal value and Prior Uncertainty δ_{CP} 0.0, uniform in δ_{CP}	17% precision improvement

Parameter	Nominal value and Prior Uncertainty
δ_{CP}	0.0, uniform in δ_{CP}
$\sin^2 2\theta_{13}$	0.095 , uniform in $\sin^2 2\theta_{13}$
$\sin^2 2 heta_{23}$	$1.0 \pm 0.03 \ (\approx \sin^2 2\theta_{23} > 0.95 \ \text{at } 90\% \ \text{CL})$
$\sin^2 2 heta_{12}$	0.857 ± 0.034
Δm^2_{32}	$2.32\pm0.10 imes10^{-3}~{ m eV^2}$
Δm_{12}^{22}	$7.5\pm0.2 imes10^{-5}\mathrm{eV^2}$

due to neutron tagging

Physics requirements vs. detectors (my personal view)

	ν _e cross section	H₂O target	4π accep.	Wrong sign BG	NC, Int. ν _e BG	Muon FS vs. v	Hadronic FS	# of neutron (Gd)	CCπ ⁰
Current ND280									
ND280 (WAGASCI)									
ND280 (HP-TPC)									
ND280 (WbLS)									
ND280 (Emulsion)									
νPRISM									
TITUS									

= OK

Summary

- Reduction of systematic errors is getting more important in the era of T2K extension* to improve the sensitivity.
 - It becomes more important to constrain the errors with near detector measurements.
- Each new candidate near detector has pros and cons.
 - We should make final decision taking into account complementarity among them.

^{*} Discussion about the extension is just started. Nothing has been decided yet.